Página 108 del libro.
Sirve para círculo cromático.
1. División de una circunferencia en tres y seis partes iguales.
1. Trazamos un diámetro vertical AB.
2. Con centro en el extremo B y radio igual al de la circunferencia, trazamos un arco , que cortará a la circunferencia en los puntos C y D. Tendremos así los puntos A, C y D quedando ya dividida la circunferencia en tres partes iguales. Uniendo dichos puntos tendríamos un triángulo equilátero.
3. Repetimos la misma operación con centro en el punto A, y obtenemos los puntos E y F.
4. Los puntos A,B,C,D,E y F son las divisiones de la circunferencia 1,2, 3, 4, 5, y 6. Uniendo todos los puntos con segmentos, obtendríamos un hexágono regular.2. División de una circunferencia en doce partes iguales.
1. Trazamos un diámetro horizontal de extremos 1 y 2. Trazamos otro perpendicular (vertical) de extremos 2 y 4. (Los hemos nombrado con números porque ya son divisiones de la circunferencia).
2. Con centro en la división 4 y radio igual al de la circunferencia, trazamos un arco de circunferencia que al cortar la la circunferencia nos determina las divisiones 5 y 6.
3. Hacemos la misma operación en la división 1, obteniéndose las divisiones 5 y 6.
4. Repetimos la operación con las divisiones 2 y 3, obteniendo las divisiones 9, 10, 11 y 12.
3. División de una circunferencia en cuatro y ocho partes iguales.
1. Trazamos un diámetro horizontal AB.
2. Trazamos otro perpendicular al anterior, CD. Tendremos ya dividida la circunferencia en cuatro partes iguales, A,B,C y D. Uniendo dichos puntos con segmentos obtendríamos un cuadrado.
Trazamos a continuación la bisectriz al cuadrante (ángulo recto) COB, con el fin de dividir por la mitad el arco BC. Obtendremos así el punto E. Si unimos el punto E con el centro O y prolongamos la unión, obtendremos F, punto que divide al arco AD en dos partes iguales también.
Trazamos a continuación la bisectriz al cuadrante (ángulo recto) COB, con el fin de dividir por la mitad el arco BC. Obtendremos así el punto E. Si unimos el punto E con el centro O y prolongamos la unión, obtendremos F, punto que divide al arco AD en dos partes iguales también.
3. Hacemos la misma operación con el arco CA para obtener las divisones G y H. Hemos pasado, pues, de cuatro divisiones a ocho divisiones.
4. Lospuntos A,B,C,D,E.F,G y H son las ocho divisiones iguales de la circunferencia. Si los unimos con segementos obtendríamos un octógono regular.
No hay comentarios:
Publicar un comentario